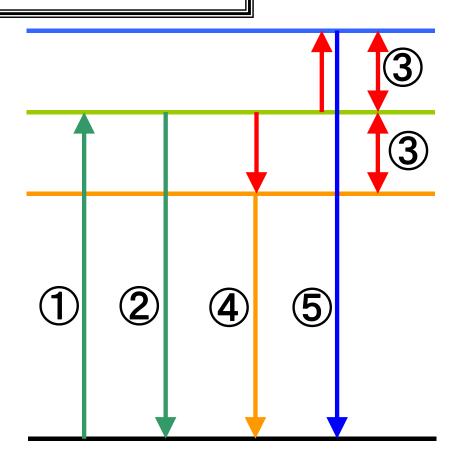
*	ラ	マ	ン	散	刮.
		•		1 1//	

物質に光を照射→散乱

散乱光に_____

波長は物質に____→_____


入射光 ν

レイリー散乱 ___: ___ 散乱, エネルギーの授受____

ストークスラマン散乱 ______ 散き

アンチストークスラマン散乱 エネルギーの授受___

★ラマン散乱

- 1 _____
- 2
- 3
- 4
- 5

4, 5 物質とエネルギーの授受:_____

物質の_____物質中の____からエネルギーの授受

振動, 回転, 電子遷移は<u></u> → が可能

★古典論的解釈

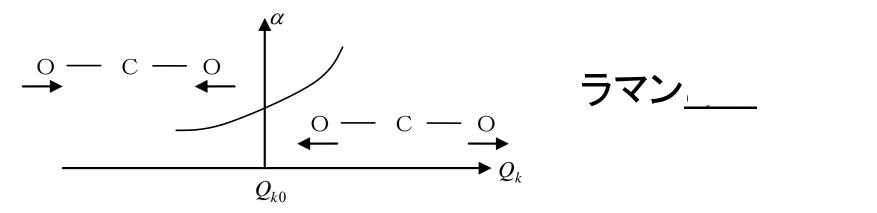
分極Pは電界Eに比例, α :分極率, P=___

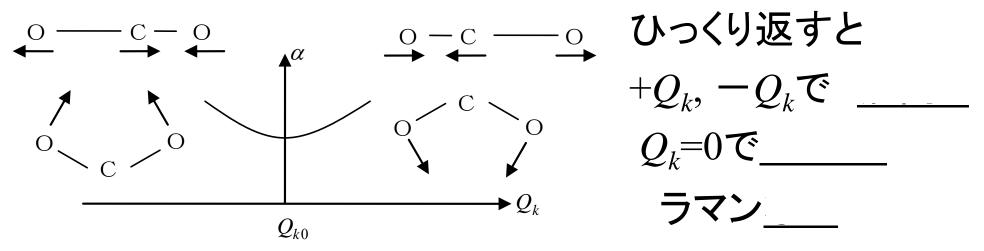
光:E時間変動、P変動→電磁波放出

 α_{ij} : 分極テンソル: k番目の基準座標 Q_k で1次までテーラー展開

$$Q_k = Q_{k0} \cos \omega_k t$$
 $\mathbf{E}_{\mathrm{i}} = E_{\mathrm{i}} \mathbf{e}_{\mathrm{i}} \cos \omega_0 t$ とすると

$$\mathbf{p}_{x} =$$


←x成分のみ考えて


 $\underline{\hspace{1cm}}:\omega_0$, $\underline{\hspace{1cm}}:\omega_k\pm\omega_0$ 出る

★古典論的解釈

 $(\partial \alpha_{ij}/\partial Q_k)_0$ ←これが0だと_____

座標変位で,平衡位置近辺で $_{1}$ $(\partial \alpha_{ij} / \partial Q_k)_0 = 0$

*	観測	時(の流	意	点
	一一一	י נים	· / /_	上~じ~	1117

●分光器

☆ラマン散乱は励起光波長にすごく近い					
single分光器だと_	<u> </u>				
☆観測範囲狭い→_					
\longrightarrow	必要				

●光源

ラマン散乱の太さは光源に依存→_____ PLに隠れるときあり→サンプルが______波長が良い

●検出器

弱いので_____